# Preparation of nano-sized TiN coated α-Si<sub>3</sub>N<sub>4</sub> particles

Shuichi Kawano, Kenichi Tsukurimichi, Junichi Takahashi and Shiro Shimada\*

Graduate School of Engineering, Hokkaido University, 060-8628 Sapporo, Japan. Tel: +81. 11. 706. 6576; Fax: +81. 11. 706. 6576; E-mail: shimashi@eng.hokudai.ac.jp

Received 27th March 2001, Accepted 15th June 2001 First published as an Advance Article on the web 6th August 2001



 $\alpha$ -Si<sub>3</sub>N<sub>4</sub> particles coated with 10 and 25 vol% nano-sized TiN were prepared by coating the surface of the Si<sub>3</sub>N<sub>4</sub> particles with TiO<sub>2</sub>, followed by nitridation. Coating by TiO<sub>2</sub> was accomplished by dispersing  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> powders (0.16 and 1.6 g l<sup>-1</sup>) in a solution of TiCl<sub>4</sub>, urea and aqueous HCl, and heating at 105 °C for 130 and 190 min. The success of the coating procedure was confirmed by TEM observation with electron diffraction and EDX analysis. Zeta potential measurements suggest that the TiO<sub>2</sub> coating on the surface of Si<sub>3</sub>N<sub>4</sub> particles occurs at a pH between 3.7 and 4.3 by the attractive force of opposite charges. When the TiO<sub>2</sub> on the surface of the Si<sub>3</sub>N<sub>4</sub> is nitrided with NH<sub>3</sub> gas at 1000 °C, it is completely changed to TiN of uniform particle size (20 nm).

## Introduction

Si<sub>3</sub>N<sub>4</sub> ceramics are promising high temperature structural materials<sup>1,2</sup> but are difficult to mechanically form into complex shapes because of their toughness and hardness. Si<sub>3</sub>N<sub>4</sub>-matrix ceramics containing highly electrically conductive TiN<sup>2,3</sup> can be machined to desired shapes by electric discharge machining. These Si<sub>3</sub>N<sub>4</sub>-matrix ceramics containing TiN were fabricated by sintering mechanically mixed Si<sub>3</sub>N<sub>4</sub> or Si and TiN or TiO<sub>2</sub> powders,<sup>4-7</sup> but the mixtures contained an inhomogeneous distribution of TiN, necessitating an increased amount of TiN. It is known that coating dispersed particles with other materials constitutes a method for homogeneous mixing, leading to several reports dealing with the coating of  $Si_3N_4$ by sintering oxide additives such as Al<sub>2</sub>O<sub>3</sub>, Y<sub>2</sub>O<sub>3</sub>, La<sub>2</sub>O<sub>3</sub> or MgO,<sup>8–10</sup> to reduce the amount of oxide needed to promote full densification. If Si<sub>3</sub>N<sub>4</sub> could be coated by fine TiO<sub>2</sub> particles in a controlled manner, the composite powders would be densified at TiN contact without sintering additives, since monolithic nano-sized TiN is sintered by field-assisted sintering.11 Thus, Si<sub>3</sub>N<sub>4</sub>-matrix ceramics with continuous TiN networks, which exhibit high electrical conductivities, should be obtained from the tailored composite powders. However, the preparation of TiN coated  $Si_3N_4$  particles has been reported only by Narula and coworkers<sup>12</sup> whose TiN coated  $Si_3N_4$  composite particles were obtained by direct deposition of TiN through the pyrolysis of  $(CH_3)_3SiNHTiCl_3$  with  $Si_3N_4$  at 600 °C. According to this report, the yield of the precursor of (CH<sub>3</sub>)<sub>3</sub>SiNHTiCl<sub>3</sub> was low and the composite particles contained Si, Cl and C impurities. It would be interesting to fabricate TiN coated Si<sub>3</sub>N<sub>4</sub> composite particles from TiO<sub>2</sub>coated Si<sub>3</sub>N<sub>4</sub> by subsequent nitridation of the TiO<sub>2</sub>, to obtain samples of good purity and controlled TiN particle size. Although alkoxides such as  $Ti(OC_2H_5)_4$  and  $Ti(OC_3H_7)_4$  are well known starting materials for the formation of TiO<sub>2</sub>, they are expensive and sensitive to atmospheric moisture. An additional disadvantage is the retention of carbon impurities in the TiO<sub>2</sub> product. The preparation of TiO<sub>2</sub> particles through the thermal hydrolysis of TiCl<sub>4</sub> by urea<sup>18</sup> has the advantage that TiCl<sub>4</sub> is cheap and easily handled in air.

In coating the matrix  $Si_3N_4$  particles with a second phase (TiO<sub>2</sub>) from solution, it is important to know the zeta potential<sup>8,9,19–21</sup> of both particles, since the success of the

coating depends on the surface charge of the two particles. Changes in the zeta potential of the particles with pH should indicate the pH at which the coating by  $TiO_2$  of  $Si_3N_4$  should occur.

The purpose of this study was to prepare nano-sized TiN coated  $\alpha$ -Si\_3N\_4 particles by depositing TiO\_2 on the surface of Si\_3N\_4 particles by thermal hydrolysis of TiCl\_4 with urea, followed by nitridation of the TiO\_2 by NH\_3 gas. The coating process is discussed on the basis of zeta potential measurements for Si\_3N\_4 and TiO\_2 and TEM observation of the coated particles.

## **Experimental procedure**

### Preparation of TiO<sub>2</sub> coated $\alpha$ -Si<sub>3</sub>N<sub>4</sub> composite particles

A flow chart of the experimental procedure for preparing TiN coated Si<sub>3</sub>N<sub>4</sub> particles is shown in Fig. 1. The starting materials were Si<sub>3</sub>N<sub>4</sub> ( $\alpha$  > 95%) with a mean particle size of 0.5 µm (UBE Industries, Tokyo, Japan), TiCl<sub>4</sub> (KANTO Chemical, Co., Inc., Tokyo, Japan) and urea (KANTO Chemical, Co., Inc., Tokyo, Japan). The Si<sub>3</sub>N<sub>4</sub> powder was added to a solution of HCl, TiCl<sub>4</sub> and urea (79.9 g), and ultrasonically dispersed for 15 min. The amount of  $TiCl_4$  with respect to  $Si_3N_4$  was adjusted to 10 and 25 vol% of the reduced volume of TiN in  $Si_3N_4$ . For example, the amount of TiCl<sub>4</sub> needed for 25 vol% TiN is 0.025 and 0.25 ml at  $Si_3N_4$  contents of 0.16 and 1.6 g  $l^{-1}$ , respectively. The suspension was heated at 105 °C for 130 or 190 min in flowing N<sub>2</sub> gas. For comparison, TiCl<sub>4</sub> was slowly dropped into a dispersion of Si<sub>3</sub>N<sub>4</sub> in aqueous NH<sub>3</sub> solution (28 vol.%) (KANTO Chemical, Co., Inc., Tokyo, Japan), omitting the urea and without heating. The TiO<sub>2</sub>-coated Si<sub>3</sub>N<sub>4</sub> particles from both methods were washed several times with distilled water and dried at 60 °C. The dried particles were observed by TEM and identified by XRD. The existence of TiO<sub>2</sub> on the Si<sub>3</sub>N<sub>4</sub> surface was ascertained by electron diffraction and EDX analysis.

The zeta potentials of the  $Si_3N_4$  powder and the  $TiO_2$  precipitate prepared from  $TiCl_4$  by thermal hydrolysis were measured using a Zeta plus apparatus (Brookhaven Instrument Corporation) in distilled water adjusted to a pH range of 3 to 7 with HCl solution. KCl solution (0.01 mol l<sup>-1</sup>) was added to the solvent to keep the ion strength constant.

J. Mater. Chem., 2001, 11, 2625–2628 2625



Fig. 1 Flow chart of the experimental procedure.

#### Nitridation

In the preliminary experiments, TiO<sub>2</sub> obtained by thermal hydrolysis of TiCl<sub>4</sub> for 190 min was nitrided in flowing NH<sub>3</sub> gas (150 ml min<sup>-1</sup>) at 900 and 1000 °C for 180 min. Based on these results, the TiO<sub>2</sub> coated Si<sub>3</sub>N<sub>4</sub> composite particles were nitrided at 1000 °C for 180 min. The TiN coated Si<sub>3</sub>N<sub>4</sub> composite particles were identified by XRD and the lattice constant ( $a_0$ ) of TiN was determined from the 311 diffraction peak. The size and shape of these particles were determined by TEM observation. The electrical resistivity of the compact composite powder containing 25 vol% TiN at a uniaxial pressure of 20 MPa was measured by the two-probe method.

#### **Results and discussion**

## Preparation of TiO<sub>2</sub> coated α-Si<sub>3</sub>N<sub>4</sub> composite particles

TiCl<sub>4</sub> in the HCl solution containing Si<sub>3</sub>N<sub>4</sub> and urea was hydrolyzed by NH<sub>3</sub> generated by the decomposition of urea on heating at 105 °C, during which the pH value increased from 1 to 7. A time of about 130 min was needed for the formation of TiO<sub>2</sub> by this method. Fig. 2 shows TEM photographs of the TiO<sub>2</sub> coated Si<sub>3</sub>N<sub>4</sub> particles obtained after thermal hydrolysis for 130 and 190 min of the TiCl<sub>4</sub> solution containing 0.16 and 1.6 g  $1^{-1}$  Si<sub>3</sub>N<sub>4</sub>, equivalent to 25 vol% of TiN. It is seen that the large particles are covered with nano-particles irrespective of the concentration of TiCl<sub>4</sub> and Si<sub>3</sub>N<sub>4</sub> or the hydrolysis time. Rings in the electron diffraction patterns of the fine particles in Fig. 2(c) (see arrow) indicate the formation of  $TiO_2$  (anatase). EDX analysis showed that the larger particles were composed of Si and N containing a trace of Ti with the fine particles containing Ti and O (Fig. 3). XRD analysis also indicates the appearance of broad TiO<sub>2</sub> peaks due to anatase. The nanometer sized particles are thus shown to be TiO<sub>2</sub> and the larger particles are  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>, indicating the successful preparation of composite particles of  $Si_3N_4$  with a fine coating of  $TiO_2$ . Few TiO<sub>2</sub> particles are detected by TEM observation, suggesting that most of the TiO<sub>2</sub> formed from TiCl<sub>4</sub> is coating



**Fig. 2** TEM images of  $TiO_2$  coated  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> particles at 25 vol% TiN. Concentration/g l<sup>-1</sup> and hydrolysis time/min: (a) 0.16 and 130, (b) 0.16 and 190, (c) 1.6 and 130, (d) 1.6 and 190.

the Si<sub>3</sub>N<sub>4</sub>. With increasing hydrolysis time from 130 to 190 min, the size of the TiO<sub>2</sub> particles on the surface of Si<sub>3</sub>N<sub>4</sub> grew from 3 to 7 nm. Agglomerated TiO<sub>2</sub> particles (see arrows) were observed in the samples obtained after 130 min, but tended to disappear after 190 min. TiO<sub>2</sub> coated Si<sub>3</sub>N<sub>4</sub> particles were similarly prepared from the suspension containing 0.084 ml TiCl<sub>4</sub> and 1.6 g l<sup>-1</sup> Si<sub>3</sub>N<sub>4</sub> corresponding to 10 vol% TiN with a hydrolysis time of 190 min (Fig. 4). It is obvious that the amount of TiO<sub>2</sub> covering the Si<sub>3</sub>N<sub>4</sub> particles is less than for the corresponding 25 vol% TiN sample (Fig. 2). This



**Fig. 3** EDX spectra for the particles shown in Fig. 2(c): (a) larger particle, (b) fine particle. Cu peaks are derived from the mesh and C from PVD carbon which provided the sample conductivity.



Fig. 4 TEM image of TiO<sub>2</sub> coated  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> particles from 10 vol% TiN.

indicates that the coating of  $Si_3N_4$  surfaces with the desired amount of  $TiO_2$  is achieved simply by controlling the amount of  $TiCl_4$ .

Fig. 5 shows the change of the zeta potential with pH in a solution containing  $Si_3N_4$  and  $TiO_2$  particles. The signs of the zeta potential of  $Si_3N_4$  and  $TiO_2$  are opposite at pH values between 3.7 and 4.3. It is anticipated that the deposition of  $TiO_2$  on the surface of the  $Si_3N_4$  particles occurs in this pH region by attractive forces between the two types of particles with opposite charges. For comparison, coating of  $TiO_2$  on  $Si_3N_4$  was attempted by direct precipitation from  $TiCl_4$  in aqueous NH<sub>3</sub> solution at pH 13.7 without urea, but scarcely any reaction was observed. It is concluded that the coating of  $TiO_2$  on the surfaces of  $Si_3N_4$  particles from  $TiCl_4$  solution occurs at a pH between 3.7 and 4.3, which is achieved by increasing the pH as a result of the decomposition of the urea.

#### Nitridation

Preliminary experiments showed that TiO<sub>2</sub> particles produced by the thermal hydrolysis of TiCl<sub>4</sub> were not completely nitrided by NH<sub>3</sub> gas at 900 °C, but were fully converted to TiN at 1000 °C. When the TiO<sub>2</sub> coating on the surface of  $Si_3N_4$ particles was nitrided at 1000 °C for 180 min, complete conversion to TiN was observed, as shown by XRD (Fig. 6). Compared with the lattice constant value ( $a_0 = 0.424$  nm) of pure TiN, the a<sub>0</sub> value of TiN obtained atfter a hydrolysis time of 190 min ( $a_0 = 0.422$  nm) was smaller, indicating the dissolution of a small amount of oxygen in the TiN. As shown by the TEM images (Fig. 7), the Si<sub>3</sub>N<sub>4</sub> particles are coated with TiN particles of a uniform size (20 nm), independent of the hydrolysis time (130-190 min) or the TiN content (10 or 25 vol%). The electrical resistivity of the compact powder containing 25 vol% TiN was measured to be  $0.1 \,\Omega$  cm. Although the electrical resistivity was not as low as for the bulk TiN sample, the result suggested that electrical conductive



Fig. 5 Zeta potentials as a function of the pH: (a)  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>, (b) TiO<sub>2</sub>.



Fig. 6 XRD pattern of TiN coated  $\alpha\text{-}Si_3N_4$  particles: ( ) TiN, ( )  $\alpha\text{-}Si_3N_4.$ 

paths provided by TiN coating should be formed through the powder compact.

## Conclusion

Fine TiO<sub>2</sub> (anatase) particles were deposited on the surface of  $Si_3N_4$  particles by thermal hydrolysis of TiCl<sub>4</sub> by the decomposition of urea in the suspension. The result was confirmed by TEM, EDX and XRD. The TiO<sub>2</sub> particles grew from 3 to 7 nm on increasing the hydrolysis time from 130 to 190 min. Zeta potential measurements suggested that TiO<sub>2</sub> coating on the surface of  $Si_3N_4$  occurs at a pH between 3.7 and 4.3. When the TiO<sub>2</sub> coated  $Si_3N_4$  composite particles were nitrided in NH<sub>3</sub> gas at 1000 °C, the coating was converted to TiN particles of uniform 20 nm size.



Fig. 7 TEM images of TiN coated  $\alpha$ -Si<sub>3</sub>N<sub>4</sub> particles: TiN content (vol%): (a) 10, (b) 25.

# Acknowledgements

We deeply thank Mr K. Matsushima (Hokkaido Industrial Research Institute, Sapporo, Japan) for helpful discussion on zeta potential measurements and Dr K. J. D. MacKenzie at Industrial Research, Lower Hutt, New Zealand, for reviewing our manuscript.

### References

- 1 K. H. Jack, J. Mater. Sci., 1976, 11, 1135.
- 2 A. W. Weimer, in *Carbide, Nitride and Boride Materials Synthesis and Processing*, Chapman & Hall, London, 1997, pp. 5, 7.
- 3 L. E. Toth, in *Transition Metal Carbides and Nitrides*, Academic Press, New York & London, 1971, p. 188.
- 4 C. Martin, B. Cales, P. Vivier and P. Mathieu, *Mater. Soc. Eng. A*, 1989, **109**, 351.
- 5 S. Balakrishnan, J. S. Burnell-Gray and D. K. Datta, *Key Eng. Mater.*, 1995, **99–100**, 279.
- 6 Wai Lin, Jenn-Ming Yang and Su- Jen Ting, J. Am. Ceram. Soc., 1992, **75**, 2945.
- 7 K. Ueno, T. Inoue, S. Sodeoka, M. Suzuki, H. Ishikawa, K. Uchiyama and T. Inui, J. Ceram. Soc. Jpn., 1997, 105, 304.

- 8 Juan Yang, M. F. Ferreira Jose and Wenjian Weng, J. Colloid Interface Sci., 1998, 206, 274.
- 9 Fabrice Bertoni, Carmen Galassi, Silvia Ardizzone and Claudia Letizia Bianchi, J. Am. Ceram. Soc., 1999, **82**, 2653.
- A. K. Garg and L. C. Dejonghe, J. Mater. Res., 1990, 5, 136.
   R. Groza Joanna, D. Curtis Justin and Martin Krämer, J. Am.
- Ceram. Soc., 2000, **83**, 1281. 12 K. Narula Chaianya, G. Demczyk Brian, Paul Czubarow and
- Dietmar Seyferth, J. Am. Ceram. Soc., 1995, 78, 1247.
  Y. Oguri, R. E. Riman and H. K. Bowen, J. Mater. Sci., 1988, 23,
- 13 Y. Oguri, K. E. Riman and H. K. Bowen, J. Mater. Sci., 1988, 23, 2897.
- 14 S. Komarneni, R. Roy and E. Breval, J. Am. Ceram. Soc., 1985, 68, C-41–C-42.
- 15 B. E. Yoldas, J. Mater. Sci., 1986, 21, 1087.
- 16 M. S. Khalil Kamal and Mohamed I Zaki, *Powder Technol.*, 1997, 92, 233.
- 17 K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi and A. Imai, J. Mater. Sci., 1994, 29, 1617.
- 18 J. Takahashi, H. Suzuki and K. Kodaira, J. Sol-Gel Sci. Technol., 1995, 4, 15.
- 19 V. A. Hackley and S. G. Malghan, J. Mater. Sci., 1994, 29, 4420.
- 20 Jau-Ho Jean and Szu-Ming Yang, J. Am. Ceram. Soc., 2000, 83, 1928.
- 21 M. Kulig and P. Greil, J. Mater. Sci., 1991, 26, 216.